Towards a general Doob-Meyer decomposition theorem

Adam Jakubowski^{*} Nicolaus Copernicus University

Abstract

Both the Doob-Meyer and the Graversen-Rao decomposition theorems can be proved following an approach based on predictable compensators of discretizations and weak- L^1 technique, which was developed by K.M. Rao. It is shown that any decomposition obtained by Rao's method gives predictability of compensators without additional assumptions (like submartingality in the original Doob-Meyer theorem or finite energy in the Graversen-Rao theorem).

1 Introduction

In his seminal papers [11] and [12], P.A. Meyer proved that any submartingale belonging to so called class (D) admits a unique decomposition into a sum of a uniformly integrable martingale and a "natural" (nowadays: "predictable") integrable increasing process. More than twenty years later, S.E. Graversen and M. Rao [3] obtained a Doob-Meyer type decomposition for processes "with finite energy", in general without uniqueness. While the original Doob-Meyer theorem was motivated by needs of potential theory, and only later found interesting probabilistic applications (vide: stochastic integration), the latter result was used in analysis of Markov processes [3] and quite recently proved to be a useful tool in investigations of the structure of Dirichlet processes and their extensions [1].

Both the Doob-Meyer and the Graversen-Rao theorems can be proved following an approach based on predictable compensators of discretizations and weak- L^1 technique, which was developed by K.M. Rao [14]. In the present paper we show that any decomposition obtained by Rao's method leads to *predictable* compensators without additional assumptions (like submartingality in the original Doob-Meyer theorem or finite energy in the Graversen-Rao theorem).

The idea of the proof is in a sense similar to that from the paper [8] and is based on the celebrated Komlós theorem [10]. The details are however much more subtle and require other advanced tools, like limit theorems for stochastic integrals and tightness in so-called S-topology introduced in [7].

2 The result

Let $\mathcal{B} = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, P)$ be a stochastic basis, satisfying the "usual" conditions, i.e. the filtration $\{\mathcal{F}_t\}$ is right-continuous and \mathcal{F}_0 contains all *P*-null sets of \mathcal{F}_T . By

^{*}Supported by Komitet Badań Naukowych under Grant No 1 P03A 022 26 and completed while the author was visiting Université de Rouen and Helsinki University of Technology.

convention, we set $\mathcal{F}_{\infty} = \mathcal{F}$. The family of stopping times with values in $[0, T]^* = [0, T] \cup \{+\infty\}$ and with respect to the filtration $\{\mathcal{F}_t\}_{t \in [0, T]^*}$ will be denoted by \mathcal{T} .

Let $\{X_t\}_{t\in[0,T]}$ be a stochastic process on (Ω, \mathcal{F}, P) , adapted to $\{\mathcal{F}_t\}_{t\in[0,T]}$ (i.e. for each $t\in[0,T]$, X_t is \mathcal{F}_t measurable) and progressively measurable. We say that X is of class (D), if the family of random variables $\{X_{\tau}; \tau \in \mathcal{T}\}$ is uniformly integrable.

We say that X has càdlàg (or regular) trajectories, if its P-almost all trajectories are right-continuous and possess limits from the left on [0, T].

For definitions of predictability, martingales etc. we refer to standard textbooks (e.g. [2], [4], [5], [9] or [13]).

Let $\theta_n = \{0 = t_0^n < t_1^n < t_2^n < ... < t_{k_n}^n = T\}, n = 1, 2, ...,$ be condensing partitions of [0, T], with

$$\max_{1 \le k \le k_n} t_k^n - t_{k-1}^n \to 0, \quad \text{as } n \to \infty.$$

By "discretizations" $\{X_t^n\}_{t\in\theta_n}$ of $\{X_t\}_{t\in[0,T]}$ we mean the processes defined by

$$X_t^n = X_{t_k^n}$$
 if $t_k^n \le t < t_{k+1}^n, X_T^n = X_T.$

If random variables $\{X_t\}_{t \in [0,t]}$ are integrable, we can associate with any discretization X^n its "predictable compensator"

$$\begin{aligned} A_t^n &= 0 \quad \text{if} \quad 0 \le t < t_1^n, \\ A_t^n &= \sum_{j=1}^k E\left(X_{t_j^n} - X_{t_{j-1}^n} \middle| \mathcal{F}_{t_{j-1}^n}\right) \quad \text{if} \quad t_k^n \le t < t_{k+1}^n, \ k = 1, 2, \dots, k_n - 1, \\ A_T^n &= \sum_{j=1}^{k_n} E\left(X_{t_j^n} - X_{t_{j-1}^n} \middle| \mathcal{F}_{t_{j-1}^n}\right). \end{aligned}$$

Notice that A_t^n is $\mathcal{F}_{t_{k-1}^n}$ -measurable for $t_k^n \leq t < t_{k+1}^n$, and so the processes A^n are predictable in a very intuitive manner, both in the discrete and in the continuous case. It is also clear, that for each $n \in \mathbb{N}$ the discrete-time process $\{M_t^n\}_{t \in \theta_n}$ given by

$$M_t^n = X_t^n - A_t^n, \quad t \in \theta_n,$$

is a martingale with respect to the discrete filtration $\{\mathcal{F}_t\}_{t\in\theta_n}$.

Theorem 1 Let $\{X_t\}_{t \in [0,T]}$ be a càdlàg process of class (D) with respect to the stochastic basis \mathcal{B} .

If for some condensing sequence $\{\theta_n\}_{n\in\mathbb{N}}$ the corresponding random variables $\{A_T^n\}_{n\in\mathbb{N}}$ are uniformly integrable, then one can find a uniformly integrable martingale $\{M_t\}_{t\in[0,T]}$ and a predictable integrable càdlàg process $\{A_t\}_{t\in[0,T]}$ of class (D) such that we have the decomposition

$$X_t = M_t + A_t, \quad t \in [0, T].$$
 (1)

An immediate consequence of predictability of $\{A_t\}$ is contained in the following

Corollary 2 If $X_t = M'_t + A'_t$, $t \in [0,T]$, is another decomposition with properties described in Theorem 1, then $N_t = A_t - A'_t$, $t \in [0,T]$, is a uniformly integrable continuous martingale.

It is clear that if we can attribute to $\{A_t\}$ some additional properties (e.g. it is nondecreasing or has finite variation or zero quadratic variation ...) then the martingale N in Corollary 2 must be zero and we obtain the uniqueness of the decomposition. In less standard cases this idea has been exploited in [3] (for Markov processes) and [1] (for weak Dirichlet processes).

One may ask what are the processes with "exploding" sequences of compensators, i.e. with $\{A_T^n\}_{n\in\mathbb{N}}$ not uniformly integrable. A variety of such processes can be constructed using the idea of self-cancellation of jumps, as in the following example.

Example 3 Let $\{r_n\}_{n\in\mathbb{N}}$ be a Rademacher sequence (i.i.d. with $P(r_n = 1) = P(r_n = -1) = 1/2$). Let $\{t_n\}_{n\in\mathbb{N}}$ be a (deterministic) sequence of times decreasing to 0. Define

$$X_t = \sum_n I_{[t_n, t_{n-1})}(t) \, r_n \frac{1}{\sqrt{n}} \, ,$$

and consider the natural filtration generated by X. Notice that X has regular trajectories, is adapted and bounded, hence of class (D).

We shall prove that X does not admit any decomposition of the form $X_t = M_t + A_t$, where M is a uniformly integrable martingale and A is a predictable, integrable càdlàg process. By contrary, suppose we are given such a representation. Then we have

$$\Delta M_{t_n} = \Delta X_{t_n} - \Delta A_{t_n} = r_n \frac{1}{\sqrt{n}} - r_{n+1} \frac{1}{\sqrt{n+1}} - \Delta A_{t_n}.$$

Using the facts that ΔM_{t_n} has null conditional expectation with respect to \mathcal{F}_{t_n-} and ΔA_{t_n} is \mathcal{F}_{t_n-} measurable, we obtain $\Delta A_{t_n} = -r_{n+1}\frac{1}{\sqrt{n+1}}$ and $\Delta M_{t_n} = r_n\frac{1}{\sqrt{n}}$. In particular, with probability one

$$\sum_{n} |\Delta M_{t_n}|^2 = +\infty,$$

what is impossible, since the quadratic variation of a martingale is finite.

3 A remark on the Graversen-Rao theorem

Following [3] we say that X is a process of finite energy if along a condensing sequence $\{\theta_n\}_{n\in\mathbb{N}}$ of partitions

$$\sup_{n} E\left[\sum_{t_i^n \in \theta_n} (X_{t_i^n} - X_{t_{i-1}^n})^2\right] < +\infty.$$

$$\tag{2}$$

Of course, if X is of finite energy, $|X_t|^2$ is integrable for every $t \leq T$ and $\sum_{s \leq T} \Delta X_s^2$ is integrable, where $\Delta X_s = X_s - X_{s-}$. It is also easy to see that any process with finite energy satisfies one of the main assumptions of our Theorem 1: the sequence $\{A_T^n\}$ is bounded in L^2 , hence uniformly integrable.

Further, it is not difficult to show that for each $\varepsilon > 0$ there exists a stopping time τ_{ε} such that $P(\tau_{\varepsilon} < T) < \varepsilon$ and

$$E \sup_{t \in [0,T]} |X_{\tau_{\varepsilon} \wedge t}|^2 < +\infty.$$

This property gives some kind of localization in class (D), but in general we do not know whether processes with finite energy form a subclass of class (D) processes.

Thus we are not able to show that the Graversen-Rao decomposition theorem is contained in our Theorem 1. Moreover, we have no examples showing that it is necessary to complete the assumptions of the Graversen-Rao theorem (e.g. by considering processes of class (D)).

What we want to stress is the fact that in the *sketch* of the proof given in [3] one can find convergence of quantities like

$$E\int_0^T A_t \, dC_t,$$

where C_t is an increasing *integrable*, *possibly unbounded* process. Corresponding limits are taken for granted, without paying any attention to details.

In the next section we rigourously perform similar computations and we find the class (D) property unavoidable.

4 Proof of Theorem 1

We will work with notation introduced in Section 2.

By the uniform integrability of $\{A_T^n\}$ we can find a subsequence $\{A_T^{n_k}\}$ convergent weakly in L^1 to some random variable α . This gives us the desired decomposition

$$X_t = M_t + A_t,$$

where

$$M_t = E(X_T - \alpha | \mathcal{F}_t)$$

is a uniformly integrable martingale (we take a càdlàg version of this process) and $A_t = X_t - M_t$ is a càdlàg process.

The essential novelty is contained in the proof of predictability of the process $\{A_t\}$, where we apply the Komlós theorem [10] in a similar way as it was done in [8], in the proof of the classical Doob-Meyer decomposition theorem, and then explore some properties of so-called S-topology introduced in [7].

Just as in the paper [8], we can find a further subsequence $\{n_{k_l}\}$ such that as $N \to \infty$

$$B_T^N = \frac{1}{N} \sum_{l=1}^N A_T^{n_{k_l}} \to \alpha = A_T, \quad \text{a.s. and in } L^1.$$
 (3)

It follows that, as $N \to \infty$,

$$M_T - \frac{1}{N} \sum_{l=1}^{N} M_T^{n_{k_l}} \to 0 \text{ a.s. and in } L^1,$$
 (4)

where $M_T = X_T - A_T$ and $M_T^n = X_T^n - A_T^n = X_T - A_T^n$.

Next let us consider natural interpolations $\{M_t^n\}_{t\in[0,T]}$ of the discrete-time martingales $\{M_t^n\}_{t\in\theta_n}$ to a uniformly integrable martingale with respect to the full filtration $\{\mathcal{F}_t\}_{t\in[0,T]}$. In other words,

$$M_t^n = E(M_T^n | \mathcal{F}_t), \quad t \in [0, T]$$

It is a routine computation to verify that we have a decomposition

$$\widetilde{M}_t^n = \widetilde{X}_t^n - \widetilde{A}_t^n, \quad t \in [0, T],$$

where

$$\begin{split} \ddot{X}_0^n &= X_0, \quad \ddot{X}_t^n = E\left(X_{t_k^n} \middle| \mathcal{F}_t\right) & \text{if} \quad t_{k-1}^n < t \le t_k^n, \ k = 1, 2, \dots, k_n. \\ \ddot{A}_0^n &= 0, \qquad \widetilde{A}_t^n = A_{t_k^n}^n & \text{if} \quad t_{k-1}^n < t \le t_k^n, \ k = 1, 2, \dots, k_n. \end{split}$$

The processes \widetilde{A}^n are adapted to the filtration $\{\mathcal{F}_t\}_{t\in[0,T]}$ and their trajectories are *left continuous*, hence they are *predictable* by the very definition of the predictable σ -field.

Notice that for $t \in \theta_n$,

$$\widetilde{M}_t^n = M_t^n, \quad \widetilde{A}_t^n = A_t^n,$$

and, in particular,

$$\widetilde{M}_T^n = M_T^n, \quad \widetilde{A}_T^n = A_T^n.$$

We have also

Lemma 4 The sequence $\{\widetilde{A}^n\}$ is uniformly of class (D), i.e. the family $\{\widetilde{A}^n_{\tau} : n \in \mathbb{N}, \tau \in \mathcal{T}\}$ is uniformly integrable.

PROOF. By the very definition

$$\widetilde{A}_{\tau}^n = \sum_{k=1}^{k_n} A_{t_k^n}^n I(t_{k-1}^n < \tau \le t_k^n)$$

Since τ is a stopping time, the event $\{t_{k-1}^n < \tau \leq t_k^n\}$ belongs to $\mathcal{F}_{t_k^n}$. If we define

$$\rho^{n}(\tau) = 0 \quad \text{if } \tau = 0, \quad \rho^{n}(\tau)(\omega) = t_{k}^{n} \quad \text{if } t_{k-1}^{n} < \tau \le t_{k}^{n},$$
(5)

then $\rho^n(\tau)$ is a stopping time with respect to the discrete filtration $\{\mathcal{F}_t\}_{t\in\theta_n}$, and

$$\hat{A}^n_{\tau} = A^n_{\rho^n(\tau)}.$$

By the discrete Doob-Meyer decomposition, $A_{\rho^n(\tau)}^n = X_{\rho^n(\tau)} - M_{\rho^n(\tau)}^n$, where X is of class (D) and $\{M^n\}$ is a sequence of discrete time martingales, with uniformly integrable terminal values $M_T^n = X_T - A_T^n$. \Box

Set

$$\widetilde{R}_t^N = \frac{1}{N} \sum_{l=1}^N \widetilde{M}_t^{n_{k_l}},$$

and observe that (4) implies uniform in probability convergence of martingales \widetilde{R}^N to the martingale M.

$$P\left(\sup_{t\in[0,T]}|M_t - \widetilde{R}_t^N| > \varepsilon\right) \to 0, \text{ as } N \to \infty, \ \varepsilon > 0.$$
(6)

Fix a stopping time $\tau \in \mathcal{T}$. Since $\{\widetilde{R}^N_{\tau}\}_{N \in \mathbb{N}}$ is uniformly integrable, we obtain from the above that

$$\widetilde{R}^N_{\tau} \to M_{\tau} \text{ in } L^1.$$
 (7)

In what follows we shall suppress the subscript k_l in the subsequence n_{k_l} . With $\rho^n(t)$ defined by (5) we have $\widetilde{X}_t^n = E(X_{\rho^n(t)}|\mathcal{F}_t)$ and we can rewrite (7) in the form

$$\frac{1}{N}\sum_{m=1}^{N} \left(E(X_{\rho^m(\tau)}|\mathcal{F}_{\tau}) - \widetilde{A}_{\tau}^m \right) - \left(X_{\tau} - A_{\tau}\right) = \frac{1}{N}\sum_{m=1}^{N} E(X_{\rho^m(\tau)} - X_{\tau}|\mathcal{F}_{\tau}) + \left(A_{\tau} - \frac{1}{N}\sum_{m=1}^{N} \widetilde{A}_{\tau}^m\right) \to 0, \text{ in } L^1.$$

As *m* tends to infinity, $\rho^m(\tau) \searrow \tau$ and by the right continuity of $\{X_t\}, X_{\rho^m(\tau)} \rightarrow X_{\tau}$ a.s. Since $\{X_t\}$ is of class (D), the latter convergence holds also in L^1 , hence $E(X_{\rho^m(\tau)} - X_{\tau} | \mathcal{F}_{\tau}) \rightarrow 0$, in L^1 . Finally we obtain that for any stopping time τ

$$\widetilde{B}_{\tau}^{N} = \frac{1}{N} \sum_{m=1}^{N} \widetilde{A}_{\tau}^{m} \to A_{\tau} \text{ in } L^{1}.$$
(8)

This fact allows us to deduce a further remarkable property of the sequence $\{\widetilde{A}^m\}$.

Lemma 5 For each stopping time $\tau \in \mathcal{T}$, \widetilde{A}_{τ}^m converges to A_{τ} weakly in L^1 .

PROOF. Fix $\tau \in \mathcal{T}$ and suppose that for some bounded random variable Z and along some subsequence $\{m_r\}$

$$E\widetilde{A}_{\tau}^{m_{\tau}}Z \to c \neq EA_{\tau}Z.$$
(9)

Due to the "subsequence property" of the Komlós theorem, the relation (3) remains unchanged if we replace the subsequence $\{n_{k_l}\}$ with its subsequence $\{m_r\}$. Consequently also (6) and (8) hold, hence

$$\frac{1}{N}\sum_{r=1}^{N}\widetilde{A}_{\tau}^{m_r} \to A_{\tau} \text{ in } L^1.$$

This is in contradiction with (9). \Box

Notice that \widetilde{A}_{τ}^{n} 's are $\mathcal{F}_{\tau-}$ measurable and so by (8) the same property belongs to A_{τ} . We have thus checked one of the two conditions equivalent to the predictability of a càdlàg process (see e.g. [4], Theorem 4.33). The other condition requires that $A_{\tau} = A_{\tau-}$ a.s. on $\{\tau < +\infty\}$ for every totally inaccessible stoping time. We may and do assume that $A_{\tau} \ge A_{\tau-}$ a.s or $A_{\tau} \le A_{\tau-}$ a.s on $\tau < +\infty$ (otherwise set e.g. $G = \{A_{\tau} \ge A_{\tau-}\} \in \mathcal{F}_{\tau}$, then $\tau' = \tau I_G + (+\infty)I_{G^c}$ is totally inaccessible and satisfies $A_{\tau'} \ge A_{\tau'-}$).

Let $\{C_t\}$ be a continuous nonnegative increasing process such that the process $\{I(\tau \leq t) - C_t\}_{t \in [0,T]}$ is a uniformly integrable martingale of zero mean. Since τ is totally inaccessible, $P(\tau = 0) = 0$ and we have $C_t = 0$ a.s.

Fix K > 0 and define stopping times

$$\eta_K = \inf\{t \in [0, T] : C_t > K\} \land T.$$
(10)

Notice that by continuity of C and $C_0 = 0$ a.s. we have $\eta_K > 0$ a.s.

We shall prove that

$$E \int_0^T \widetilde{A}_t^m \, dC_{t \wedge \eta_K} \to E \int_0^T A_t \, dC_{t \wedge \eta_K}, \text{ as } m \to \infty.$$
(11)

At first we shall ensure uniform integrability of the integrals.

Lemma 6 Let $\{D_t\}_{t\in[0,T]}$ be a bounded increasing adapted continuous process, $D_0 = 0$ a.s. and let $\{B_t^i\}_{i\in\mathbb{I}}$ be a family of càdlàg or càglàd processes which are uniformly of class (D). Then the family of integrals $\{\int_0^T B_s^i dD_s\}_{i\in\mathbb{I}}$ is uniformly integrable.

PROOF.We may assume that $D_T \leq 1$. Let $\Phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex increasing function such that $\Phi(u)/u \to +\infty$ as $u \to +\infty$ and

$$\sup_{i,\tau} E\Phi(|B^i_\tau|) < +\infty.$$

Consider stopping times $\{\eta_{k/n} : k = 1, 2, ..., n, n \in \mathbb{N}\}$ defined for D by (10) and observe that

$$\sup_{i,n} E\Phi\left(\left|\sum_{k=1}^{n} B^{i}_{\eta_{k/n}}(D_{\eta_{k/n}} - D_{\eta_{(k-1)/n}})\right|\right) \leq \sup_{i,n} E\Phi\left(\sum_{k=1}^{n} |B^{i}_{\eta_{k/n}}|\frac{1}{n}\right)\right)$$
$$\leq \sup_{i,n} \frac{1}{n} \sum_{k=1}^{n} E\Phi\left(|B^{i}_{\eta_{k/n}}|\right) < +\infty$$

Since a.s. $\int_0^T B_s^i dD_s = \lim_{n \to \infty} \sum_{k=1}^n B_{\eta_{k/n}}^i (D_{\eta_{k/n}} - D_{\eta_{(k-1)/n}})$, the proof is complete.

Corollary 7 In fact we have proved uniform integrability of the larger family

$$\Big\{\int_0^T B_s^i dD_s : i \in \mathbb{I}\Big\} \cup \Big\{\sum_{k=1}^n B_{\eta_{k/n}}^i (D_{\eta_{k/n}} - D_{\eta_{(k-1)/n}}) : i \in \mathbb{I}, n \in \mathbb{N}\Big\}.$$

Let us return to the proof of (11). Assume for brevity that $K \in \mathbb{N}$. Suppose that for some $\delta > 0$ and along some subsequence $\{m'\}$

$$\left| E \int_0^T \widetilde{A}_t^{m'} dC_{t \wedge \eta_K} - E \int_0^T A_t dC_{t \wedge \eta_K} \right| > \delta.$$
(12)

We have by Corollary 7

$$E \int_0^T A_t \, dC_{t \wedge \eta_K} = \lim_{n \to \infty} \sum_{k=1}^{K \cdot n} E A_{\eta_{k/n}} (C_{\eta_{k/n}} - C_{\eta_{(k-1)/n}}).$$

On the other hand, by Lemma 5 for fixed $n \in \mathbb{N}, k \leq K \cdot n$ we have

$$EA_{\eta_{k/n}}(C_{\eta_{k/n}} - C_{\eta_{(k-1)/n}}) = \lim_{m' \to \infty} E\widetilde{A}_{\eta_{k/n}}^{m'}(C_{\eta_{k/n}} - C_{\eta_{(k-1)/n}}).$$

It follows that one can find a subsequence $m'_n \to \infty$ of $\{m'\}$ such that

$$E \int_{0}^{T} A_{t} dC_{t \wedge \eta_{K}} = \lim_{n \to \infty} \sum_{k=1}^{K \cdot n} E \widetilde{A}_{\eta_{k/n}}^{m'_{n}} (C_{\eta_{k/n}} - C_{\eta_{(k-1)/n}})$$
$$= \lim_{n \to \infty} \int_{0}^{T} \pi_{n} (\widetilde{A}^{m'_{n}})_{t} d\pi_{n} (C)_{t}, \qquad (13)$$

where $\pi_n(B)$ is the discretization of the process B at random times $0 \leq \eta_{1/n} \leq \eta_{2/n} \ldots \leq \eta_K \leq T$. We shall prove that along the subsequence $\{m'_n\}$

$$E \int_0^T \widetilde{A}_t^{m'_n} \, dC_{t \wedge \eta_K} - E \int_0^T \pi_n(\widetilde{A}^{m'_n})_t \, d\pi_n(C)_t \to 0.$$

Given (13), this will contradict (12).

In view of Corollary 7 it is enough to prove that for arbitrary sequence $\{m_n\}$

$$\int_0^T \widetilde{A}_t^{m_n} \, dC_{t \wedge \eta_K} - \int_0^T \pi_n(\widetilde{A}^{m_n})_t \, d\pi_n(C)_t \to 0 \text{ in probability.}$$

Let \overline{A}^n be the càdlàg version of the process \widetilde{A}^n . Obviously we have $\int_0^T \widetilde{A}_t^{m_n} dC_{t \wedge \eta_K} = \int_0^T \overline{A}_{t-}^{m_n} dC_{t \wedge \eta_K}$. We have also for k > 0

$$\pi_n(\widetilde{A}^{m_n})_{\eta_{k/n}} = \overline{A}_{\eta_{k/n}}^{m_n}$$

and so

$$\int_0^T \pi_n(\widetilde{A}^{m_n})_t \, d\pi_n(C)_t = \int_0^T \overline{A}_{t-}^{m_n} \, d\pi_n(C)_t.$$

We were thus able to reduce the problem to the convergence

$$\int_0^T \overline{A}_{t-}^{m_n} d(C_{t \wedge \eta_K} - \pi_n(C)_t) \to 0 \text{ in probability.}$$

We are going to apply results of [6]. In this context we need to recall the notion of S-tightness, i.e. uniform tightness in so-called S-topology on the Skorokhod space $D([0,T]:\mathbb{R}^1)$ introduced in [7] (see Proposition 3.1 there).

Let $\{X^{\alpha}\}$ be a family of stochastic processes with càdlàg trajectories on [0, T]. For a càdlàg function $x \in D([0, 1] : \mathbb{R}^1)$ denote by $N_a^b(x)$ the number of up-crossings given levels a < b, $a, b \in \mathbb{R}^1$, on the interval [0, T]. Set also $||x||_{\infty} = \sup_{t \in [0, T]} |x(t)|$. The family $\{X^{\alpha}\}$ is said to be S-tight if the family $\{||X^{\alpha}||_{\infty}\}$ is bounded in probability and for each pair a < b of reals the family $\{N_a^b(X^{\alpha})\}$ is bounded in probability.

Lemma 8 The family $\{\overline{A}^n\}$ is S-tight.

PROOF. Any trajectory of \overline{A}^n can be obtained by change of time of the corresponding trajectory of A^n (this change of time is related to the discretization θ_n and it eliminates the value 0 taken by A^n on $[0, t_1^n)$). Hence we have

$$\|\overline{A}^n\|_{\infty} = \|A^n\|_{\infty}, \quad N^b_a(\overline{A}^n) \le N^b_a(A^n), \ a < b, a, b \in \mathbb{R}^1.$$

To prove S-tightness of the family $\{A^n\}$ we observe first that due to the discrete nature of processes A^n it is sufficient to compute the quantities $||A^n||_{\infty}$ and $N^b_a(A^n)$ over the finite set θ_n . Further, on θ_n we have $A^n_t = X^n_t - M^n_t$, where $\{X^n\}$ is a restriction of the càdlàg process X and M^n is a martingale with respect to the discrete filtration $\{\mathcal{F}_t\}_{t\in\theta_n}$. Since $\sup_n E|M^n_T| \leq E|X_T| + \sup_n E|A^n_T| < +\infty$, we obtain S-tightness of $\{M^n\}$ by standard martingale inequalities. And S-tightness of the family $\{X^n\}$ of discretizations of a càdlàg process is obvious. \Box

Given S-tightness of the sequence $\{\overline{A}^n\}$ we are completely in the framework considered in [6]. We cannot however simply apply Theorem 3.11 of [7] and then Theorem 1 of [6] for we do not control the convergence of $\overline{A}_0^n = A_{t_1}^n$. Instead we can use Theorem 7 of [6] which states that any limit in distribution of our sequence of stochastic integrals is again a stochastic integral with respect to the limit of the sequence $C_{t \wedge \eta_K} - \pi_n(C)_t$ which is 0. We have proved (11).

If (11) is established, the rest of the proof is straight-forward. We have

$$EA_{\tau-}I(\tau \leq \eta_K) = E \int_0^T A_{t-} dI(\tau \leq t \wedge \eta_K)$$

$$= E \int_0^T A_{t-} dC_{t \wedge \eta_K}$$

$$= E \int_0^T A_t dC_{t \wedge \eta_K} \quad \text{for } C \text{ is continuous}$$

$$= \lim_{m \to \infty} E \int_0^T \widetilde{A}_t^m dC_{t \wedge \eta_K} \quad \text{by (11)}$$

$$= \lim_{m \to \infty} E \int_0^T \widetilde{A}_t^m dI(\tau \leq t \wedge \eta_K)$$

$$= \lim_{m \to \infty} E \widetilde{A}_\tau^m I(\tau \leq \eta_K)$$

$$= EA_\tau I(\tau \leq \eta_K) \quad \text{by Lemma 5.}$$

We have assumed that $A_{\tau} \geq A_{\tau-}$ or $A_{\tau} \leq A_{\tau-}$, so we obtain

$$A_{\tau-}I(\tau \leq \eta_K) = A_{\tau}I(\tau \leq \eta_K)$$
 a.s., $K > 0$.

Since C_t is integrable, $P(\eta_K < T) \to 0$, as $K \to \infty$. Hence $A_{\tau} = A_{\tau-}$ a.s. and the theorem follows.

References

- F. Coquet, A. Jakubowski, J. Mémin and L. Słomiński, Natural decomposition of processes and weak Dirichlet processes, in: M. Émery and M. Yor, Eds., Séminaire de Probabilités XXXIX, Lect. Notes in Math. 1874, Springer 2006, 81-116.
- [2] C. Dellacherie and P.A. Meyer, Probabilités and Potentiel, Vol. 1-4, Hermann, Paris (1975-87).
- [3] S.E. Graversen and M. Rao, Quadratic variation and energy, Nagoya Math. J., 100 (1985), 163-180.

- [4] Sh. He, J. Wang and J. Yan, Semimartingale Theory and Stochastic Calculus, Science Press and CRC Press, Beijing and Boca Raton, 1992.
- [5] J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lect. Notes in Math., 714, Springer 1979.
- [6] A. Jakubowski, Convergence in various topologies for stochastic integrals driven by semimartingales, Ann. Probab., 24 (1996), 2141–2153.
- [7] A. Jakubowski, A non-Skorohod topology on the Skorohod space, *Electron. J. Probab.*, 2 (1997), no 4, 21 pp.
- [8] A. Jakubowski, An almost sure approximation for the predictable process in the Doob-Meyer decomposition theorem, to appear in: M. Émery, M. Ledoux and M. Yor, Eds., Séminaire de Probabilités XXXVIII, Lect. Notes in Math., 1857, Springer 2005, 158-164.
- [9] O. Kallenberg, Foundations of Modern Probability, Springer 1997.
- [10] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar., 18 (1967), 217-229.
- [11] P.A. Meyer, A decomposition theorem for supermartingales, *Illinois J. Math.*, 6 (1962), 193–205.
- [12] P.A. Meyer, Decomposition of supermartingales: The uniqueness theorem, *Illinois J. Math.*, 7 (1963), 1–17.
- [13] P. Protter, Stochastic Integration and Differential Equations, Springer 1990.
- [14] K.M. Rao, On decomposition theorems of Meyer, Math. Scand., 24 (1969), 66–78.

AUTHOR'S ADDRESS: Nicolaus Copernicus University Faculty of Mathematics and Computer Science ul. Chopina 12/18, 87–100 Toruń, Poland adjakubo@mat.uni.torun.pl