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Abstract
Both the Doob-Meyer and the Graversen-Rao decomposition theorems can be

proved following an approach based on predictable compensators of discretizations
and weak-L1 technique, which was developed by K.M. Rao. It is shown that
any decomposition obtained by Rao’s method gives predictability of compensators
without additional assumptions (like submartingality in the original Doob-Meyer
theorem or finite energy in the Graversen-Rao theorem).

1 Introduction

In his seminal papers [11] and [12], P.A. Meyer proved that any submartingale belonging
to so called class (D) admits a unique decomposition into a sum of a uniformly integrable
martingale and a “natural” (nowadays: “predictable”) integrable increasing process.
More than twenty years later, S.E. Graversen and M. Rao [3] obtained a Doob-Meyer
type decomposition for processes “with finite energy”, in general without uniqueness.
While the original Doob-Meyer theorem was motivated by needs of potential theory,
and only later found interesting probabilistic applications (vide: stochastic integration),
the latter result was used in analysis of Markov processes [3] and quite recently proved
to be a useful tool in investigations of the structure of Dirichlet processes and their
extensions [1].

Both the Doob-Meyer and the Graversen-Rao theorems can be proved following
an approach based on predictable compensators of discretizations and weak-L1 tech-
nique, which was developed by K.M. Rao [14]. In the present paper we show that any
decomposition obtained by Rao’s method leads to predictable compensators without
additional assumptions (like submartingality in the original Doob-Meyer theorem or
finite energy in the Graversen-Rao theorem).

The idea of the proof is in a sense similar to that from the paper [8] and is based
on the celebrated Komlós theorem [10]. The details are however much more subtle and
require other advanced tools, like limit theorems for stochastic integrals and tightness
in so-called S-topology introduced in [7].

2 The result

Let B = (Ω,F , {Ft}t∈[0,T ], P ) be a stochastic basis, satisfying the “usual” conditions,
i.e. the filtration {Ft} is right-continuous and F0 contains all P -null sets of FT . By
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convention, we set F∞ = F . The family of stopping times with values in [0, T ]∗ =
[0, T ] ∪ {+∞} and with respect to the filtration {Ft}t∈[0,T ]∗ will be denoted by T .

Let {Xt}t∈[0,T ] be a stochastic process on (Ω,F , P ), adapted to {Ft}t∈[0,T ] (i.e. for
each t ∈ [0, T ], Xt is Ft measurable) and progressively measurable. We say that X is
of class (D), if the family of random variables {Xτ ; τ ∈ T } is uniformly integrable.

We say that X has càdlàg (or regular) trajectories, if its P -almost all trajectories
are right-continuous and possess limits from the left on [0, T ].

For definitions of predictability, martingales etc. we refer to standard textbooks
(e.g. [2], [4], [5], [9] or [13]).

Let θn = {0 = tn0 < tn1 < tn2 < . . . < tnkn
= T}, n = 1, 2, . . ., be condensing partitions

of [0, T ], with
max

1≤k≤kn

tnk − tnk−1 → 0, as n →∞.

By “discretizations” {Xn
t }t∈θn of {Xt}t∈[0,T ] we mean the processes defined by

Xn
t = Xtnk

if tnk ≤ t < tnk+1, Xn
T = XT .

If random variables {Xt}t∈[0,t] are integrable, we can associate with any discretiza-
tion Xn its “predictable compensator”

An
t = 0 if 0 ≤ t < tn1 ,

An
t =

k∑
j=1

E
(
Xtnj

−Xtnj−1

∣∣Ftnj−1

)
if tnk ≤ t < tnk+1, k = 1, 2, . . . , kn − 1,

An
T =

kn∑
j=1

E
(
Xtnj

−Xtnj−1

∣∣Ftnj−1

)
.

Notice that An
t is Ftnk−1

-measurable for tnk ≤ t < tnk+1, and so the processes An are
predictable in a very intuitive manner, both in the discrete and in the continuous case.
It is also clear, that for each n ∈ N the discrete-time process {Mn

t }t∈θn given by

Mn
t = Xn

t −An
t , t ∈ θn,

is a martingale with respect to the discrete filtration {Ft}t∈θn .

Theorem 1 Let {Xt}t∈[0,T ] be a càdlàg process of class (D) with respect to the stochas-
tic basis B.

If for some condensing sequence {θn}n∈N the corresponding random variables {An
T }n∈N

are uniformly integrable, then one can find a uniformly integrable martingale {Mt}t∈[0,T ]

and a predictable integrable càdlàg process {At}t∈[0,T ] of class (D) such that we have
the decomposition

Xt = Mt + At, t ∈ [0, T ]. (1)

An immediate consequence of predictability of {At} is contained in the following

Corollary 2 If Xt = M ′
t + A′

t, t ∈ [0, T ], is another decomposition with properties
described in Theorem 1, then Nt = At − A′

t, t ∈ [0, T ], is a uniformly integrable
continuous martingale.
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It is clear that if we can attribute to {At} some additional properties (e.g. it is non-
decreasing or has finite variation or zero quadratic variation . . . ) then the martingale
N in Corollary 2 must be zero and we obtain the uniqueness of the decomposition. In
less standard cases this idea has been exploited in [3] (for Markov processes) and [1]
(for weak Dirichlet processes).

One may ask what are the processes with “exploding” sequences of compensators,
i.e. with {An

T }n∈N not uniformly integrable. A variety of such processes can be con-
structed using the idea of self-cancellation of jumps, as in the following example.

Example 3 Let {rn}n∈N be a Rademacher sequence (i.i.d. with P (rn = 1) = P (rn =
−1) = 1/2). Let {tn}n∈N be a (deterministic) sequence of times decreasing to 0. Define

Xt =
∑

n

I[tn,tn−1)(t) rn
1√
n

,

and consider the natural filtration generated by X. Notice that X has regular trajec-
tories, is adapted and bounded, hence of class (D).

We shall prove that X does not admit any decomposition of the form Xt = Mt +At,
where M is a uniformly integrable martingale and A is a predictable, integrable càdlàg
process. By contrary, suppose we are given such a representation. Then we have

∆Mtn = ∆Xtn −∆Atn = rn
1√
n
− rn+1

1√
n + 1

−∆Atn .

Using the facts that ∆Mtn has null conditional expectation with respect to Ftn− and
∆Atn is Ftn−- measurable, we obtain ∆Atn = −rn+1

1√
n+1

and ∆Mtn = rn
1√
n

. In
particular, with probability one ∑

n

|∆Mtn |2 = +∞,

what is impossible, since the quadratic variation of a martingale is finite.

3 A remark on the Graversen-Rao theorem

Following [3] we say that X is a process of finite energy if along a condensing sequence
{θn}n∈N of partitions

sup
n

E

 ∑
tni ∈θn

(Xtni
−Xtni−1

)2

 < +∞. (2)

Of course, if X is of finite energy, |Xt|2 is integrable for every t ≤ T and
∑

s≤T ∆X2
s

is integrable, where ∆Xs = Xs−Xs−. It is also easy to see that any process with finite
energy satisfies one of the main assumptions of our Theorem 1: the sequence {An

T } is
bounded in L2, hence uniformly integrable.

Further, it is not difficult to show that for each ε > 0 there exists a stopping time
τε such that P (τε < T ) < ε and

E sup
t∈[0.T ]

|Xτε∧t|2 < +∞.
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This property gives some kind of localization in class (D), but in general we do not
know whether processes with finite energy form a subclass of class (D) processes.

Thus we are not able to show that the Graversen-Rao decomposition theorem is
contained in our Theorem 1. Moreover, we have no examples showing that it is neces-
sary to complete the assumptions of the Graversen-Rao theorem (e.g. by considering
processes of class (D)).

What we want to stress is the fact that in the sketch of the proof given in [3] one
can find convergence of quantities like

E

∫ T

0
At dCt,

where Ct is an increasing integrable, possibly unbounded process. Corresponding limits
are taken for granted, without paying any attention to details.

In the next section we rigourously perform similar computations and we find the
class (D) property unavoidable.

4 Proof of Theorem 1

We will work with notation introduced in Section 2.
By the uniform integrability of {An

T } we can find a subsequence {Ank
T } convergent

weakly in L1 to some random variable α. This gives us the desired decomposition

Xt = Mt + At,

where
Mt = E(XT − α|Ft)

is a uniformly integrable martingale (we take a càdlàg version of this process) and
At = Xt −Mt is a càdlàg process.

The essential novelty is contained in the proof of predictability of the process {At},
where we apply the Komlós theorem [10] in a similar way as it was done in [8], in
the proof of the classical Doob-Meyer decomposition theorem, and then explore some
properties of so-called S-topology introduced in [7].

Just as in the paper [8], we can find a further subsequence {nkl
} such that as

N →∞

BN
T =

1
N

N∑
l=1

A
nkl
T → α = AT , a.s. and in L1. (3)

It follows that, as N →∞,

MT −
1
N

N∑
l=1

M
nkl
T → 0 a.s. and in L1, (4)

where MT = XT −AT and Mn
T = Xn

T −An
T = XT −An

T .
Next let us consider natural interpolations {M̃n

t }t∈[0,T ] of the discrete-time martin-
gales {Mn

t }t∈θn to a uniformly integrable martingale with respect to the full filtration
{Ft}t∈[0,T ]. In other words,

M̃n
t = E

(
Mn

T |Ft

)
, t ∈ [0, T ].
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It is a routine computation to verify that we have a decomposition

M̃n
t = X̃n

t − Ãn
t , t ∈ [0, T ],

where

X̃n
0 = X0, X̃n

t = E
(
Xtnk

∣∣Ft

)
if tnk−1 < t ≤ tnk , k = 1, 2, . . . , kn.

Ãn
0 = 0, Ãn

t = An
tnk

if tnk−1 < t ≤ tnk , k = 1, 2, . . . , kn.

The processes Ãn are adapted to the filtration {Ft}t∈[0,T ] and their trajectories
are left continuous, hence they are predictable by the very definition of the predictable
σ-field.

Notice that for t ∈ θn,
M̃n

t = Mn
t , Ãn

t = An
t ,

and, in particular,
M̃n

T = Mn
T , Ãn

T = An
T .

We have also

Lemma 4 The sequence {Ãn} is uniformly of class (D), i.e. the family {Ãn
τ : n ∈

N, τ ∈ T } is uniformly integrable.

Proof. By the very definition

Ãn
τ =

kn∑
k=1

An
tnk

I(tnk−1 < τ ≤ tnk).

Since τ is a stopping time, the event {tnk−1 < τ ≤ tnk} belongs to Ftnk
. If we define

ρn(τ) = 0 if τ = 0, ρn(τ)(ω) = tnk if tnk−1 < τ ≤ tnk , (5)

then ρn(τ) is a stopping time with respect to the discrete filtration {Ft}t∈θn , and

Ãn
τ = An

ρn(τ).

By the discrete Doob-Meyer decomposition, An
ρn(τ) = Xρn(τ) −Mn

ρn(τ), where X is of
class (D) and {Mn} is a sequence of discrete time martingales, with uniformly integrable
terminal values Mn

T = XT −An
T .

Set

R̃N
t =

1
N

N∑
l=1

M̃
nkl
t ,

and observe that (4) implies uniform in probability convergence of martingales R̃N to
the martingale M .

P
(

sup
t∈[0,T ]

|Mt − R̃N
t | > ε

)
→ 0, as N →∞, ε > 0. (6)

Fix a stopping time τ ∈ T . Since {R̃N
τ }N∈N is uniformly integrable, we obtain from

the above that
R̃N

τ → Mτ in L1. (7)
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In what follows we shall suppress the subscript kl in the subsequence nkl
. With

ρn(t) defined by (5) we have X̃n
t = E(Xρn(t)|Ft) and we can rewrite (7) in the form

1
N

N∑
m=1

(
E(Xρm(τ)|Fτ )− Ãm

τ

)
−

(
Xτ −Aτ

)
=

1
N

N∑
m=1

E(Xρm(τ) −Xτ |Fτ ) +
(
Aτ −

1
N

N∑
m=1

Ãm
τ

)
→ 0, in L1 .

As m tends to infinity, ρm(τ) ↘ τ and by the right continuity of {Xt}, Xρm(τ) →
Xτ a.s. Since {Xt} is of class (D), the latter convergence holds also in L1, hence
E(Xρm(τ) −Xτ |Fτ ) → 0, in L1. Finally we obtain that for any stopping time τ

B̃N
τ =

1
N

N∑
m=1

Ãm
τ → Aτ in L1. (8)

This fact allows us to deduce a further remarkable property of the sequence {Ãm}.

Lemma 5 For each stopping time τ ∈ T , Ãm
τ converges to Aτ weakly in L1.

Proof. Fix τ ∈ T and suppose that for some bounded random variable Z and along
some subsequence {mr}

EÃmr
τ Z → c 6= EAτZ. (9)

Due to the “subsequence property” of the Komlós theorem, the relation (3) remains un-
changed if we replace the subsequence {nkl

} with its subsequence {mr}. Consequently
also (6) and (8) hold, hence

1
N

N∑
r=1

Ãmr
τ → Aτ in L1.

This is in contradiction with (9).
Notice that Ãn

τ ’s are Fτ− measurable and so by (8) the same property belongs to
Aτ . We have thus checked one of the two conditions equivalent to the predictability
of a càdlàg process (see e.g. [4], Theorem 4.33). The other condition requires that
Aτ = Aτ− a.s. on {τ < +∞} for every totally inaccessible stoping time. We may
and do assume that Aτ ≥ Aτ− a.s or Aτ ≤ Aτ− a.s on τ < +∞ (otherwise set e.g.
G = {Aτ ≥ Aτ−} ∈ Fτ , then τ ′ = τIG + (+∞)IGc is totally inaccessible and satisfies
Aτ ′ ≥ Aτ ′−).

Let {Ct} be a continuous nonnegative increasing process such that the process
{I(τ ≤ t) − Ct}t∈[0,T ] is a uniformly integrable martingale of zero mean. Since τ is
totally inaccessible, P (τ = 0) = 0 and we have Ct = 0 a.s.

Fix K > 0 and define stopping times

ηK = inf{t ∈ [0, T ] : Ct > K} ∧ T. (10)

Notice that by continuity of C and C0 = 0 a.s. we have ηK > 0 a.s.
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We shall prove that

E

∫ T

0
Ãm

t dCt∧ηK → E

∫ T

0
At dCt∧ηK , as m →∞. (11)

At first we shall ensure uniform integrability of the integrals.

Lemma 6 Let {Dt}t∈[0,T ] be a bounded increasing adapted continuous process, D0 =
0 a.s. and let {Bi

t}i∈I be a family of càdlàg or càglàd processes which are uniformly of
class (D). Then the family of integrals {

∫ T
0 Bi

s dDs}i∈I is uniformly integrable.

Proof.We may assume that DT ≤ 1. Let Φ : R+ → R+ be a convex increasing
function such that Φ(u)/u → +∞ as u → +∞ and

sup
i,τ

EΦ(|Bi
τ |) < +∞.

Consider stopping times {ηk/n : k = 1, 2, . . . , n, n ∈ N} defined for D by (10) and
observe that

sup
i,n

EΦ
(
|

n∑
k=1

Bi
ηk/n

(Dηk/n
−Dη(k−1)/n

)|
)

≤ sup
i,n

EΦ
( n∑

k=1

|Bi
ηk/n

| 1
n

)
)

≤ sup
i,n

1
n

n∑
k=1

EΦ(|Bi
ηk/n

|) < +∞

Since a.s.
∫ T
0 Bi

s dDs = limn→∞
∑n

k=1 Bi
ηk/n

(Dηk/n
−Dη(k−1)/n

), the proof is complete.

Corollary 7 In fact we have proved uniform integrability of the larger family

{ ∫ T

0
Bi

s dDs : i ∈ I
}
∪

{ n∑
k=1

Bi
ηk/n

(Dηk/n
−Dη(k−1)/n

) : i ∈ I, n ∈ N
}
.

Let us return to the proof of (11). Assume for brevity that K ∈ N. Suppose that
for some δ > 0 and along some subsequence {m′}

∣∣E ∫ T

0
Ãm′

t dCt∧ηK − E

∫ T

0
At dCt∧ηK

∣∣ > δ. (12)

We have by Corollary 7

E

∫ T

0
At dCt∧ηK = lim

n→∞

K·n∑
k=1

EAηk/n
(Cηk/n

− Cη(k−1)/n
).

On the other hand, by Lemma 5 for fixed n ∈ N, k ≤ K · n we have

EAηk/n
(Cηk/n

− Cη(k−1)/n
) = lim

m′→∞
EÃm′

ηk/n
(Cηk/n

− Cη(k−1)/n
).
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It follows that one can find a subsequence m′
n →∞ of {m′} such that

E

∫ T

0
At dCt∧ηK = lim

n→∞

K·n∑
k=1

EÃm′
n

ηk/n
(Cηk/n

− Cη(k−1)/n
)

= lim
n→∞

∫ T

0
πn(Ãm′

n)t dπn(C)t, (13)

where πn(B) is the discretization of the process B at random times 0 ≤ η1/n ≤
η2/n . . . ≤ ηK ≤ T . We shall prove that along the subsequence {m′

n}

E

∫ T

0
Ã

m′
n

t dCt∧ηK − E

∫ T

0
πn(Ãm′

n)t dπn(C)t → 0.

Given (13), this will contradict (12).
In view of Corollary 7 it is enough to prove that for arbitrary sequence {mn}∫ T

0
Ãmn

t dCt∧ηK −
∫ T

0
πn(Ãmn)t dπn(C)t → 0 in probability.

Let A
n be the càdlàg version of the process Ãn. Obviously we have

∫ T
0 Ãmn

t dCt∧ηK =∫ T
0 A

mn

t− dCt∧ηK . We have also for k > 0

πn(Ãmn)ηk/n
= A

mn

ηk/n−

and so ∫ T

0
πn(Ãmn)t dπn(C)t =

∫ T

0
A

mn

t− dπn(C)t.

We were thus able to reduce the problem to the convergence∫ T

0
A

mn

t− d(Ct∧ηK − πn(C)t) → 0 in probability.

We are going to apply results of [6]. In this context we need to recall the notion
of S-tightness, i.e. uniform tightness in so-called S-topology on the Skorokhod space
D([0, T ] : R1) introduced in [7] (see Proposition 3.1 there).

Let {Xα} be a family of stochastic processes with càdlàg trajectories on [0, T ]. For
a càdlàg function x ∈ D([0, 1] : R1) denote by N b

a(x) the number of up-crossings given
levels a < b, a, b ∈ R1, on the interval [0, T ]. Set also ‖x‖∞ = supt∈[0,T ] |x(t)|. The
family {Xα} is said to be S-tight if the family {‖Xα‖∞} is bounded in probability and
for each pair a < b of reals the family {N b

a(Xα)} is bounded in probability.

Lemma 8 The family {An} is S-tight.

Proof. Any trajectory of A
n can be obtained by change of time of the corresponding

trajectory of An (this change of time is related to the discretization θn and it eliminates
the value 0 taken by An on [0, tn1 )). Hence we have

‖An‖∞ = ‖An‖∞, N b
a(An) ≤ N b

a(An), a < b, a, b ∈ R1.
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To prove S-tightness of the family {An} we observe first that due to the discrete nature
of processes An it is sufficient to compute the quantities ‖An‖∞ and N b

a(An) over the
finite set θn. Further, on θn we have An

t = Xn
t −Mn

t , where {Xn} is a restriction of
the càdlàg process X and Mn is a martingale with respect to the discrete filtration
{Ft}t∈θn . Since supn E|Mn

T | ≤ E|XT | + supn E|An
T | < +∞, we obtain S-tightness of

{Mn} by standard martingale inequalities. And S-tightness of the family {Xn} of
discretizations of a càdlàg process is obvious.

Given S-tightness of the sequence {An} we are completely in the framework consid-
ered in [6]. We cannot however simply apply Theorem 3.11 of [7] and then Theorem 1
of [6] for we do not control the convergence of A

n
0 = An

tn1
. Instead we can use Theorem 7

of [6] which states that any limit in distribution of our sequence of stochastic integrals
is again a stochastic integral with respect to the limit of the sequence Ct∧ηK − πn(C)t

which is 0. We have proved (11).
If (11) is established, the rest of the proof is straight-forward. We have

EAτ−I(τ ≤ ηK) = E

∫ T

0
At− dI(τ ≤ t ∧ ηK)

= E

∫ T

0
At− dCt∧ηK

= E

∫ T

0
At dCt∧ηK for C is continuous

= lim
m→∞

E

∫ T

0
Ãm

t dCt∧ηK by (11)

= lim
m→∞

E

∫ T

0
Ãm

t dI(τ ≤ t ∧ ηK)

= lim
m→∞

EÃm
τ I(τ ≤ ηK)

= EAτI(τ ≤ ηK) by Lemma 5.

We have assumed that Aτ ≥ Aτ− or Aτ ≤ Aτ−, so we obtain

Aτ−I(τ ≤ ηK) = AτI(τ ≤ ηK) a.s., K > 0.

Since Ct is integrable, P (ηK < T ) → 0, as K → ∞. Hence Aτ = Aτ− a.s. and the
theorem follows.
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