























8 Memory about Tadeusz Wysocki...

of Electronics Fundamentals. From 1973-1975, he headed the Teaching Innovations
Laboratory, where he introduced the Teaching Techniques course for the academics. He
was a successful and respected academic teacher. He devoted his whole professional life
to educating future engineers, and was inspiration for many generations of graduates.
They could always count on his answers no matter if related to technical challenges
or to common life problems. His personality was so strong, that his children, the daugh-
ter in-law as well as two grandsons have also chosen their careers in Electrical or Tele-
communications Engineering.

Tadeusz Wysocki was also involved in numerous areas outside the Academia.
From 1954-1967, he was a member of the inter-university subjects committee, specifi-
cally examining and developing curricula and teaching programs. From 1967 until
1984, he was a member of the Electronics team at the Institute of Methodological Terti-
ary Studies for Working Students, in Gliwice. There, he developed a study entitled
“Fundamentals of supervising engineering thesis projects for working students (major in
electronics engineering)”, published in 1974. This was the first ever comprehensive
study into this issue in Poland.

In 1958, he was nominated to the National Science & Economics Council, By-
dgoszcz Division and from 1965-1967, he served as a president of that Council. From
1951, Tadeusz Wysocki was an active member of the Association of Polish Electrical
Engineers (SEP). There, he worked on the establishment of a Faculty of Electrical
Engineering at the Tertiary Engineering College in Bydgoszcz. For three terms, since
1984, he served as a Deputy of the Bydgoszcz Division of SEP. From 1960-1964, he
was the deputy head of the Regional Arbitration Committee of the Polish Federation of
Engineering Associations (NOT) for Bydgoszcz Region. He was a founding member of
the Bydgoszcz Scientific Society, and was the secretary of its Faculty of Technical
Studies for over forty years.

Tadeusz Wysocki was an author or co-author of 2 monographs, 8 textbooks, and
52 research papers. He presented the outcomes of his research at many scientific confer-
ences or symposia. He was the inventor or co-inventor of 36 patents and 3 registered
designs. Afier his retirement in 1986, Tadeusz remained an active researcher, involved
in both fundamental and applied research projects.

Tadeusz Wysocki received numerous rewards for his accomplishments, including
a host of national and district awards, as well as from various societies, including
the Cavalry Cross of the Poland Rebirth Order, Golden Cross of Achievements,
The National Education Commission Medal, the Golden Insignia of Honor from NOT,
Golden Insignia of Honor from SEP, the Golden Insignia “Honored by Telecommunica-
tion Sector” and The Honor Insignia for Services to the City of Bydgoszcz. For his
achievement in education, he was awarded the Individual Education Minister’s Prize in
1986. For his efforts in establishing the Academy of Technology and Agriculture
(ATR), he was awarded the ATR Medal of Service, the 50" Anniversary Medal
of Service to the Faculty of Mechanical Engineering and the 40™ Anniversary Medal of
Service to the Faculty of Telecommunications and Electrical Engineering. In 2005, he
received the 85™ Independence Anniversary Medal of Bydgoszcz.

Tadeusz Wysocki had far-reaching interests and incredible talents, as well as
a caring nature and a healthy sense of humor.

Tadeusz Wysocki passed away on the 12™ of June 2005 in Bydgoszcz. His funeral
was held on the 17™ of June at the Sacred Heart of Our Lord parish cemetery, on Lud-
wikowo Street in Bydgoszcz.
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education and introductory courses in the area of signals and systems. Related
material concerning discrete-space systems is given in Section 3.

Of particular interest is the observation in Section 2.1 that for the large family
of inputs and maps H addressed, the Dirac impulse-response concept is in fact
not the key concept concerning the representation of H, and that instead the
input-output properties of H are determined in general by a certain type of family

{Hg. : € € {0, p)} of responses.

2. REPRESENTATION THEOREM

We use Li(IR%) to denote the normed lincar space of Lebesgue integrable
complex-valued functions z defined on the set IR? of real d-vectors, with the usual
norm given by

lell: = [ lata)do. (@
RY
As usual, when Ll(Rd) is regarded as a metric space, the elements of Ll(Rd)
are understood to be equivalence classes. By convergence in Ll(Rd), we mean
convergence to an element of L;(IR%) with respect to the norm in I, (IR%).

As is well known, the d-dimensional extension of the concept of an impulse
function as described by P. Dirac, while often useful in engincering and scientific
applications, is unsatisfactory from the viewpoint of mathematics. It is unsatis-

factory because according to the usual theory of integration,

/le gla)da =0

for any complex-valued function ¢ defined on R? with q(ct) = 0 for [leell ; > 0, even
if g(0) = oo is allowed.* It is also well known, at least for d = 1, that an alternative
approach (see, for example, [7]) involves envisioning a sequence of progressively

taller and narrower unit-integral functions centered at a = 0.° In this spirit, but

4More specifically, with q(0) = oo allowed, the integral is zero as a Lebesgue integral or
an improper Riemann integral. In the remainder of the paper, all integrals are meant to be
interpreted as Lebesgue integrals.

5There is also a related theory of distributions [28] developed by L. Schwartz and S. Sobelov
around 1948, in which the delta function is viewed as a linear functional on a certain type of space
of infinitely differentiable functions of compact support. Distribution theory frees differential
calculus from certain difficulties that arise because of the existence of nondifferentiable functions.
No use is made of these ideas in this paper.
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with no attempt to adhere strictly to the concept of a generalized function, we
introduce the following definition, in which BL;(JR%) denotes the linear space of
bounded L;(IR") functions, with the norm defined by (4).

Q denotes the family of BL;(JR%)-valued maps ¢ defined on (0,1) such that,

with ¢(¢) denoted by g,

/ g(a)da =1 for €€ (0,1), sup/ lge(@)] da < o0,
R4 € R4

and
e—0

lim / |ge(cv)| dax =0, &> 0.
||a“((1> >¢

Note that ¢ given by the familiar expression

1/e, Ja| <e€/2
0, otherwise

i

ge()

is an element of Q for d = 1.

We use H to stand for the family of all linear shift-invariant maps H from
Lo (IRY) into itsclf, such that the restriction of H to BL;(IR?) is a continuous
map into BLI(Rd). 5 Let n be a number in [1, 00). For each positive o, let W, be
the map from Lo, (IR?) to BL,(IR?) defined by (W,z)(a) = w,{a)z(a), in which
we € BL(IRT) with wy () = 1 for el gy < o and Jug ()| <1, |l gy > 0. (eg,
w, could be taken to be equal to 2 — ¢! Ha||(d) for o < ||a||(d) < 20, and equal
to 0 for {|al| 4 > 20).

It is reasonable to say, roughly speaking, that an element H of H has an impulse
response (or what might more accurately be called a “g-response limit” ) if for every
q € Q we have Hq, well defined for cach € € (0,1), with lim, _, y Hg, existing in a
meaningful sense and not dependent on g. Our theorem is the following result. For
the type of H addressed in the theorem, H has an impulse response A in the precise
sense that statement (a) of the theorem holds. (The engineering literature says
little about the existence of iipulse responses for general systems, which typically

are simply assumed to exist.) Finally, given a € Loo(ﬂid), we say that b, assumed

SBy H is shift invariant we mean as usual that H[z(- — ¢)] = (Hz)(- — ¢) for all z and all
¢ € R,
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9(8) = h(y - B)z(B)
belongs to L;(IR?), and

(He)) = [ b= 9)a(6)do ©)

for almost all vy € IR®.

2.1. Comments

The proof in [20] makes usc of the following two lemmas proved in [17] and
[19], respectively.
Lemma 1: Let g and f belong to Q and L;(IR%), respectively. Then

/ 4(-— B)F(B) dp (10)
Rd

is an element of L, (IR") for each ¢, and it converges in Li(IR%) to f ase — 0.7

Lemma 2: Suppose that linear shift-invariant H is a continuous map of Ll(Rd)
into itself, and let ¢ be an element of Q.
Then
Hz = lim /}RL(HqC)(- —~B)z(B)dB, = e Li(IRY) (11)

«— 0

where the convergence is in L, (IR%).

Lemma 2 is of interest in its own right. We will refer to Lemma 1 below.

The proof in [20] makes clear that h in (¢) is unique in L;(IR%), and that it
is the limit described in (b). Also, it can be shown, using material in [5, p. 569],
that for d = 1 there is a function K of bounded variation on IR such that the
iterated limit on the right side of (7) can be written as the limit as ¢ — oo of a
Lebesgue-Sticltjes integral

/ 2 (-~ B)dK(9)
R

in which 2, (8) = w, (8)x(8). However, this simplification obscures the role played
by the Hq,.
Parts (a)-(d) of our theorem provide conditions under which the conclusion of

a familiar engineering argument of long standing can be justified. That argument,

"Lemma 1 is related to results in [3, p. 149 | and [10, p. 72 ], and [3] gives references
concerning other related results.
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which is often taught to students and which concerns the representation of linear
shift-invariant systems, proceeds as follows (using our notation). Let H be the
input-output map of such a system, and let Xy be the family of all possible input
functions — assumed only to be real-valued, or complex-valued, and defined on IR?.

Typically, d = 1. One writes

w(e) = [ dta=a(s)ds (12)

for any input z, in which ¢ is said to be the Dirac delta function -~ a function on
IR? of unit integral that vanishes except at the origin. Noting (12), which is the
description of the “sifting-function” property of §, and appealing to the linearity

and shift-invariance of H, one is said to have

He=H [ 6( - 8)(8)dp = / H(- - )a(8) df (13)
Rd Rd

in which Hé(- —3) is h(- — 3), where h is the system’s impulse response Hdé. Thus,

one concludes that
(Hz)(a) :/ ha — B)z(3) dB (14)
R4

for all z € Xy. In particular, one concludes that the input-output properties of H
are completely defined by its impulse response. As indicated in the Introduction
- (see also [22]), these conclusions are now known to be incorrect. This fact con-
tradicts a widely-held engineering belief typically taught to students, to the effect
that the maln textbook conclusions concerning continuous-time linear systems ob-
tained using Dirac delta-function arguments can be shown to be valid using the
mathematical theory of distributions.®

There are at least three difficulties with the engineering argument just de-

scribed: (a) As noted near the beginning of Section 2, there is no function ¢ that

has the properties described,? (b) even if (a) were not true, the interchange of the

8These remarks should in no way be interpreted as a criticism of distribution theory itself, or
of the delta function as defined in the setting of distribution theory.

9This was understood at the outset by mathematicians. And, according to Marsden (8, p.
275]: “At the same time as the physicists and engineers were computing, mathematicians sat back
in quiet amusement, pointing out that this é-function business was really all nonsense because
no such function can exist. The definition does not really make sense, as anyone can plainly see.
To add to the mathematician’s enjoyment, Dirac proceeds to differentiate this function 4.”
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Theorem 3 is proved in [11] (alternatively, see [12, Appendix G| or [13, pp. 68—
69]). For D = Z, and H causal in the usual sense, the term limy_, o, (H Ex7)(c) is
always zero. However, for D = 2¢, and also for D = Z, with H not causal, there
are maps H for which the additional term is not always zero (see [11] or [13]). A
related result addressing systems with stochastic inputs is given in [25].

There are some other results related to Theorem 3 that are of direct interest.
For example, it is a widespread engineering belief that linear shift-invariant input-
output operators that take a set of functions (closed under translation) into itself
commute in the sense that HyH; = HyH, for any two such operators. But this is
based on the belief that such operators, for which h(c, ) can be written in the form
h{a— 3), have convolution representations. In [26] theorems are given to the effect
that, in the discrete-space setting described above, it is not true that shift-invariant
operators commute (e.g., always commute), even though H,H, = H,H; holds on
certain interesting subsets of inputs. A result showing the lack of cummutativity

for some continuous-space systems is also given.1®

BIBLIOGRAPHY

[1] G. Bachman and L. Narici, Functional Analysis, New York: Academic Press,
1966.

[2] W. J. Borodziewicz, K. J. Jaszczak, and M. A. Kowalski, “A Note on Math-
ematical Formulation of Discrete-Time Linear Systems,” Signal Processing,
vol. 5, pp. 369-375, 1983.

[3] W. Cheney and W. Light, A Course in Approzimation Theory, Pacific Grove:
Brooks/Cole, 2000.
[4] R. E. Edwards, Functional Analysis, New York: Dover, 1995.

[5] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Provi-
dence: American Mathematical Society, 1957.

(6] P. Hughett, “Representation Theorems for Semilocal and Bounded Linear
Shift-Invariant Operators on Sequences,” Signal Processing, vol. 67, pp. 199
209, 1998.

{7] M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions,
Cambridge: Cambridge University Press, 1960.

16And it was found [27] that not all linear shift-invariant continuous-space systems are char-
acterized by their frequency responses (even when they exist).



A short survey of recent representation results... 23

(8] J. E. Marsden, Elementary Classical Analysis, New York: W. H. Freeman
and Company, 1974.

[9] A. V. Oppenheim, R. W. Shafer, and J. R. Buck, Discrete-Time Signal
Processing (Second FEdition), Upper Saddle River: Prentice Hall, 1999.

(10] B. E. Petersen, Introduction to the Fourier Transform and Pseudo-
Differential Operators, Pitman Publishing Inc., Marshfield, Massachusetts:
1983.

(11} I. W. Sandberg, “A Representation Theorem for Linear Discrete-Space Sys-
tems,” Mathematical Problems in Engineering, vol. 4, pp. 369-375, 1998.

{12] I. W. Sandberg, “Multidimensional Nonlinear Myopic Maps, Volterra Series,
and Uniform Neural-Network Approximations,” pp. 99-128 in D. Docampo,
A. Figueiras-Vidal, and F. Perez-Gonzalez (eds.), Intelligent Methods in Sig-
nal Processing and Communications, Boston: Birkhauser, 1997.

[13] I. W. Sandberg, J. T. Lo, C. Francourt, J. Principe, S. Katagiri, and S.
Haykin Nonlinear Dynamical Systems: Feedforward Neural Network Per-
spectives, New York: John Wiley, 2001.

[14] I. W. Sandberg, “Causality and the Impulse Response Scandal,” IEEFE
Transactions on Circuits and Systems I, vol. 50, no. 6., pp. 810-811, 2003.

[15] , “On Causality and the Impulse Response Scandal,” WSEAS
Transactions on Circuits and Systems, vol. 3, no. 9, pp. 1741-1744, 2004,

[16] , “Notes on Representation Theorems for Linear Discrete-
Space Systems,” Proceedings of the International Symposium on Circuits
and Systems, Orlando, Florida, May 30-June 2, 1999 (four pages on CD).

[17] , “Notes on Linear Systems and Impulse Responses,” Cir-
cuits, Systems and Signal Processing, vol. 23, no. 5, pp. 339-350, 2004.

(18] , “Notes on Multidimensional Linear System Representa-
tions,” 38th Annual Conference on Information Sciences and Systems, De-
partment, of Electrical Engineering, Princeton University, Princeton, NJ, pp.
801-806, March 2004.

[19] , “On the Representation of Linear System Maps: Inputs
that Need Not be Continuous,” Proceedings of the 6th WSEAS International
Conference on Applied Mathematics, Corfu Island, Greece, August 17-19,
2004 (five pages on CD).

[20] , “Bounded Inputs and the Representation of Linear System
Maps,” Circuits, Systems, and Signal Processing, vol. 24, no. 1, pp. 103-115,
2005.

[21] , “On the Representation of Linear System Maps: Bounded
Inputs,” Proceedings of the 6th WSEAS International Conference on Applied
Mathematics,” Corfu Island, Greece, August 17-19, 2004 (six pages on CD).






AKADEMIA TECHNICZNO-ROLNICZA IM. JANA 1 JEDRZEJA SNIADECKICH
W BYDGOSZCZY
ZESZYTY NAUKOWE NR 247
TELEKOMUNIKACJA I ELEKTRONIKA 9 (2006), 25-35

Combined Achromatic and Chromatic
Correction of Color Images

Luca Lucchese! and Sanjit K. Mitrat

$School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, OR 97331
*Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

Abstract

This paper advances a new algorithm for determining the color mapping be-
tween two images of the same object or scene taken under different illumi-
nation conditions. The proposed algorithm compensates for differences in
colors by separately equalizing their achromatic and chromatic components.
The equalization of the 1-D achromatic channel is carried out with a standard
technique for gray-level images whereas the equalization of the 2-D chromatic
channel is considered as a problem of image warping. This method can also
be used to color calibrate a trichromatic sensing device, provided that a color
chart is available.

Keywords: Color correction, 2-D warping, chromatic coordinates, luminance,
color chart, color constancy.

1 Introduction

Color is an important feature in many computer vision systems for object recogni-
tion. Such feature is subject to a great variability which depends on various factors,
such as the spectral characteristics of the color sensor, the chromatic aberration
of its lens system, and the illuminant(s) casting light on the object or scene of
interest. The simple mathematical formulation of the image acquisition process
taking place in a color imaging sensor shows these dependencies and help under-
stand their importance in the appearance of color in digital images. The pixels of
a color image can be represented with triplets (O g, ©¢,Op) whose components
are given by

Oy = ka(A)R(A)z(A)dA, k=R,G,B, )

where pr(A)’s are the spectral sensitivities, in the red, green, and blue bands, of
the color filters of the camera which acquired the image, R(}\) is the reflectance
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hi(€) ha(£)

: oy :
X X'

Figure 2: Histograms h;(£) and h2(€) considered as probability density functions.

locus of purples, and the small circle the reference white chosen as the chromatic
point corresponding to the standard illuminant Des (v, = 0.1978 and v/, = 0.4683)
[10].

The two images C; and Ca, having size L, x L, are represented in a palettized
format® as C,, = {Qm, Pm, W}, m = 1,2, where Q,, € NE=*Lv are matrices
of pointers to the palettes P, € RV=*3 arranged as Py, = [Y,, ) v7,], where
Y,, € R contains the luminance values of C,,, 1}, € RV and v/, € RV¥m
carry the chromaticity components, and w,, € N¥= contains the number of pixels
associated with the entries of the palette P,,; V,, is the number of distinct colors
within each image (in general, Ny # N,).

3 Color Correction Algorithm

3.1 Correction of the achromatic channel

From vectors Y1, wy, Y5, and ws, we build the two histograms h;(€) and hy(€)
where 0 < € < 1, because of the definition of Y in Eq. (2), and hy(€) and ho(€) rep-
resent the number of pixels having values of luminance comprised between £ —8¢/2
and £ + 6€/2, 8¢ being the width of the histogram bins; in our implementation,
a hundred bins are used for the construction of the histograms. In order to in-
terpret the luminance histograms as probability density functions (pdf’s), they are
normalized in such a way that fol hpn(6)dE =1, m=1,2.

Enhancement of gray-level images is commonly accomplished through his-
togram equalization which consists in flattening the pdf’s associated with the
luminance histograms {11]. In our task instead, we want to render the luminance
values of C; as close as possible to those of C2; to this end, we enforce the equality
of the cumulative distributions [12] (sce Fig. 2), i.e.,

X x'
/ ha (€)dE = / ha(€)de, 3)
0 0

where x’ = ¢(x) is a monotonic function to estimate. This function is numerically
computed by dividing the domain [0, 1] of the two histograms into IV intervals Ay

3Symbol R denotes the set of real numbers, symbol N the set of natural numbers.
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formed into warp,,{uf,v1}; Figure 1 (f) displays such chromaticities for the
reported example. From 7P; a new palette can now be built as warp{P,} =
[warp, {Y 1} warp,., {u’,v1}] and a new image, in turn, can be built from C; as
warp{C1} = {Q1, warp {P1},w1}. Figure 1 (e) shows the image warp{C,}, ob-
tained by equalizing C; against Cz of the same figure with our algorithm. We may
notice that the appearance of the colors of warp{C1} is very close to that of the
colors of Cz. Fig. 5 displays the results obtained with another pair of test images
[14]; in this case, the change of illuminant between the two in rather severe since
the first was acquired with a bluish illuminant and the second with a yellowish

one. Nonetheless, the proposed color correction algorithm performs satisfactorily.

4 Conclusions

A new method for correcting color of digital images has been presented. It works
separately on the achromatic and chromatic channels of a color image. The cor-
rection of the achromatic channel is carried out with a standard technique for
gray-level images while the correction of the 2-D chromatic channel is considered
as a problem of image warping. The effectiveness of this method has been con-
firmed by the two experiments reported in the paper.
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From any given sequence of finite or infinite graphs, a nonstandard graph can be
constructed. The procedure is similar to an ultrapower construction of an internal set
from a sequence of subsets of the real line, but now the individual entities are the
nodes of the graphs instead of real numbers. The transfer principle can then be
invoked to extend several graph-theoretic results to the nonstandard case. In this
work, nonstandard versions of Eulerian graphs, Hamiltonian graphs, and a coloring
theorem are established for nonstandard graphs

Keywords: Nonstandard graphs, transfer principle, ultrapower constructions, Eulerian
graphs, Hamiltonian graphs, a graph-coloring theorem.

1. INTRODUCTION

A nonstandard graph can be defined by applying the transfer principle to a set X
of nodes, with the set B of branches defined by a symmetric irreflexive binary
relationship on X [3], [4]. Thus, the conventional graph G ={X, B} is transferred to

the nonstandard graph ‘G ={X,'E}. This result can be used to establish in

a nonstandard way the standard theorem that, if every finite subgraph of a conventional
infinite graph G has a coloring with finitely many colors, namely & colors, then G
itself has such a finite coloring with & colors.

A different and more general construction of a nonstandard graph [6] starts with an
arbitrary sequence of conventional (finite or infinite) graphs and constructs from that
a nonstandard graph in much the same way as an internal set in the hyperreal line *® is

constructed from a given sequence of subsets of the real line /&, that is, by means of an
ultrapower construction. In this case, the resulting nonstandard graph has nonstandard
branches and nonstandard nodes. This construction of a nonstandard graph is presented
in [6]. It is more general than the prior approach based on a symmetric irreflexive
binary relation in that the graphs of the sequence need not be node-induced subgraphs
of a given graph.
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After setting up our nonstandard graphs using an ultrapower approach, we invoke
the transfer principle to lift several standard graph-theoretic results into a nonstandard
setting. In particular, standard theorems concerning Eulerian graphs, Hamiltonian
graphs, and a coloring theorem are extended to the nonstandard setting. By virtue of the
transfer principle, this only requires that the standard theorems be stated as sentences in
symbolic logic, which are then transferred to appropriate sentences for nonstandard
graphs.

In the following, a set A4 is denoted with braces, as for example by 4= {a,b.c,..},

where the terms within the braces are the elements of the set 4. 4 may have any
cardinality, the latter being denoted by | A4}. &V denotes the set of natural numbers:

N ={0,1,2,..} . Thus, a sequence is a function from /Y into a set A and is denoted by
(a" tnely ) or simply by (a”) where ne IV is understood. /& denotes the set of real

numbers. Hence, "V is the set of hypernaturals, and & is the set of hyperreals.

2. NONSTANDARD GRAPHS

A standard graph G is a conventional (finite or infinite) graph G ={.X, B} , where
X is the set of its nodes and B is the set of its branches. Each branch d € B is a two-
clement set b ={x,y} with x,ye X and x# y; b and x are said to be incident and
so, too, are b and y. Also, x and y are said to be adjacent through b. By this

definition, there are no multiedges (i.e., no parallel branches) and no self-loops (i.e., no
branches consisting of a single node). Paths, loops (i.¢., closed paths), trails, and closed
trails in a standard finite graph have their usual definitions.

Next, let (G":nel\\/) be a given sequence of graphs. For each n, we have
G, ={X,,B,}, where X, is the set of branches and B, is the set of nodes. We allow
X,NnX, #< sothat G, and G, may be subgraphs of a larger graph. In fact, we may
have X, =X and B, =B, forall nme N sothat G, may be the same graph for all
ne NV . Furthermore, let F' be a chosen nonprincipal ultrafilter on & [3].

In the following, (x") = (xn: ne ¥y ) will denote a sequence of nodes with x, € .Y,
for all ne NV . A nonstandard node “x is an equivalence class of such sequences of
nodes, where two such sequences (x,) and (y,) are taken to be equivalent if
{rx,=y,}€F, in which case we write (x") =(y,) ae.” or say that x, =y, “for
almost all n.” We also write “x=[x,], where it is understood that the x, are the
members of any one sequence in the equivalence class. We let *X denote the set of
nonstandard nodes.

Next, we define the nonstandard branches: Let “x=[x ] and "y =[y,] be two
nonstandard nodes. Let N, ={n{x,,y,} e B,} and N ={n{x,,y,} ¢ B,}. Since F is

an ultrafilter, exactly one of N, and N:‘ is a member of F. If it is N_, then

P
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hyperfinite paths and loops appear in [6], and connectedness for nonstandard graphs is
discussed in [6]. These ideas are used in the following. Some knowledge of symbolic
logic and the transfer principle are also used in the following. The needed information is
given in [6, Appendix A].

Sections 2 through 4 in this paper present new results that have not been published
elsewhere.

3. EULERIAN GRAPHS

A finite trail is defined much as a finite path is defined except that the condition
that all the nodes be distinct is relaxed; however, branches are still required to be
distinct. Thus, the truth of the following symbolic sentence defines a trail 7' in a finite
graph G ={X, B}, with 7 having two or more branches. This time we use the notation

b, ={x,,y,} to display the nodes x,, and y, that are incident to b, .
@hke NN\{0})3b,.b,....b, € BY(Vme{0,...k—1})(y, =x,,,)

That B is a set insures that the branches b,,5,,...,5, are all distinct. On the other hand,
this sentence allows nodes to repeat in a trail.

For a closed trail, we have the truth of the following symbolic sentence as its definition.
Fhe NN\{0}) 3 b.b,....0, € BY(Ym e {0,..k—1}))(y, =x,, ) A (¥, =x,)
With O denoting a trail, we denote the set of branches in Q by B(Q). Also, we let

O(G) denote the set of closed trails in a given graph G = {X, B} .

By attaching asterisks (as usual when invoking the transfer principle), we obtain by
transfer the corresponding sentence for trails in a given nonstandard graph
‘G ={"X,"B}. Thus, a nonstandard trail *Q is defined by the truth of the following
symbolic sentence; now, b, ={x,,v,} is a nonstandard branch with the nonstandard

m

nodes x, and y, .
Fhe ' NN\{0})(3by.b,...b, € B)(Vme{0,....k-1})(y, =x,,.,)
A similar expression holds for a wnonstandard closed trail (just append
A (¥, =x,)). With "Q denoting a nonstandard trail, we denote the set of nonstandard
branches in "Q by "B( Q). Also, we let “@(G) denote the set of nonstandard closed
trails in a given nonstandard graph "G = {" X,"B}.
Let C, denote the set of finite connected graphs. Thus, "C, denotes the set of

hyperfinite connected nonstandard graphs [6]. A finite connected graph G = {X,B}e(C .

is called Eulerian if it contains a closed trail that meets every node of X . The degree
d, of xe X is the natural number d_=|{be B: x € b}|. The nonstandard version of

this definition is as follows: Let "G = {"X, B} €°C, . For any x€'X , the degree of x
is d, =|{be’B:xeb}|. In this case, d, may be an unlimited hypernatural number

when *G is a hyperfinite graph. However, "G might happen to be a finite graph
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EULEROWSKIE  HAMILTONOWSKIE GRAFY NIESTANDARDOWE
ORAZ TWIERDZENIE O KOLOROWANIU DLA GRAFOW
NIESTANDARDOWYCH

Streszczenie

Z dowolnej sekwencji graféw skoriczonych lub nieskonczonych mozna zbudowaé
graf niestandardowy. Procedura w tym przypadku jest podobna do konstrukeji tzw.
ultramocy zbioru wewnetrznego z sekwencji podzbioréw zbioru liczb rzeczywistych,
gdzie teraz poszczegdlne wielkosci sg weztami graféw, a nie liczbami rzeczywistymi.
Wtedy zasada transferu moze by¢ zastosowana w celu rozszerzenia zakresu
stosowalnosci wielu teoretycznych wynikéw dotyczacych graféw standardowych na
grafy niestandardowe. W tej pracy sg rozpatrywane niestandardowe przypadki grafow
Eulerowskich i Hamiltonowskich oraz twierdzenie o kolorowaniu dla przypadku
graféw niestandardowych.

Stowa kluczowe: grafy niestandardowe, zasada transferu, konstrukcje ultramocy, grafy
Eulerowskie i Hamiltonowskie, twierdzenie o kolorowaniu grafow.
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PRODUCTS OF DIRAC IMPULSES IN NONLINEAR ANALYSIS
WITH THE USE OF VOLTERRA SERIES

Andrzej Borys

Institute for Telecommunications
Faculty of Telecommunications and Electrical Engineering
University of Technology and Agriculture
ul. Kaliskiego 7, 85-791 Bydgoszcz, Poland

It is shown in this paper that the products of Dirac impulses can occur in the nonlinear
analysis with the use of Volterra serics. Then these products must be however treated
as the products of Dirac impulses of different arguments. Moreover, they can be
assumed to be multi-dimensional Dirac impulses satisfying similar conditions as those
regarding the ordinary one-dimensional Dirac impulse, but now in the corresponding
multi-dimensional time or frequency domain. The defining relations for these multi-
dimensional Dirac impulses are derived. Also the expressions for their Fourier trans-
forms are given.

Keywords: nonlinear analysis, Volterra serics, Dirac impulse, multi-dimensional
Dirac impulses.

1. INTRODUCTION

There are researchers who believe that the products of Dirac impulses, which can
occur in nonlinear analysis with the use of Volterra series of continuous time, are not
allowed. They say that such products are forbidden by mathematics, or more precisely,
by the theory of distributions [1]. Expressing the above statement, they however forget
that in the nonlinear analysis we do not have to do with the products of one variable but
with the products of more variables. That is we deal in the nonlinear analysis with the
products like &()5(,), 8(1,)5(¢,)5(t,) . and so on, not with the products of the form

S(NS(1), S(S(1)s(1)» and so on, where J(f) means a Dirac impulse of a continuous

time variable /.
The products §(:)S(¢), d(1)o(r)s(t), and of higher order of this type do not exist

[8], of course, contrary to their multi-dimensional counterparts 8(t)5(,),
8(1)0(1,)8(1,) » and so on, which make sense.

The objective of this paper is to show, using a quite simple and understandable
mathematics, that the usage of Dirac impulse products in the Volterra nonlinear analysis,
as it has been done in {2, 3, 4, 5, 6, 7], is fully correct.
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The result given by (4) can be rewritten in the following form:

¥ -

] T&(r, )S(1, )i, dt, = [ ]5(:, )dt, j[ J]cS(tz)dtzj -1, (5)

Note that (5) represents a kind of a normalizing condition put upon the product of two
Dirac impulses of two different time variables f, and ¢, . This result can be interpreted
in such a way that the product of two Dirac impulses of two different time variables does
exist, according to (2), because it is a subject to a constraint given by (5).

The above result can be easily extended for more dimensions. To see this, consider
again (2), and write the convolution of a Dirac impulse occurring on the right-hand side
of (2) (now §(z,)) with another Dirac impulse (5(¢ —7,) ). This leads to

o) = ]‘é‘(rl Yo(t—7,)dr, =

= ] ]-o'(r)é'(r, -7)dro(t —1))dr, = ©
= J. ]5(r)§(r, —7)0(t —1,)drdz, .
Applying then the normaliziné condition given by (1) to (6) gives
1= ] J. ]d(r)é‘(q -7)0(t —7)drdrdt. D

¥ o -

Afterwards, introducing a new variable 1 — 7, =1, with dt = dt, on the right-hand side of
(7), we obtain

1= J J- ]-5(T)0'(fl -1)S(t)drdr,d1, =

- (8)
= J- J-(S(r)cS(rl -7) J-cS(t, Ydtdrdz, .
Proceeding similarly by introducing 7, —7 =¢, with di, = d7, in (8), we get
1= ja‘(r)( j(s(tz)dtzj( @ )dtl]dr =
p S a4 )

:( ]5(12)5112)( ]d(tl)dt,]( 3].5(r)dr] =1-1-1.
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Concluding, we see that the result of (9) can be rewritten as

O] °]' O]"y (t,)8(1,)5(t,)dr dt,dt, =

= ( ?é(tl)dt,J( 0]'5(12)6112]( ]’6(t_,)dt3] =1.

Equation (10) represents a kind of a normalizing condition put upon the product of three
Dirac impulses of three different time variables ¢,, 1, , and ¢, . Moreover, this result can

(10)

be interpreted in such a way that the product of three Dirac impulses of three different
time variables does exist, similarly as §(¢,)6(¢,) before, because of the fact that it is

a subject to a constraint given by (10).

It is evident that the above procedure can be continued for higher dimensions.

The results derived in this section will be used to prove the correciness of the
Volterra nonlinear analysis, in which the products of ordinary Dirac impulses occur.

3. A MULTI-DIMENSIONAL GENERALIZATION OF A DIRAC IMPULSE

Consider first an example of a simple linear circuit being a linear conductor pos-
sessing an i-v characteristic given by the following equation:

i(t) = gw(t) an

where i(t) and v(¢) # 5(t) are, respectively, the current and voltage at this conductor,

and g represents its conductance. Note that (11) can be rewritten using the terminology
of systems theory [8] that is by means of a convolution, with the use of a Dirac impulse,
as -

i(t)= ?gé‘(r)v(t—r)dr, (12)

where g&(r) represents an impulse response of a circuit considered, i.e. of a linear

conductor. This impulse response is in the form of a constant multiplied by a Dirac im-
pulse. It illustrates one of the possible applications of the one-dimensional Dirac impulse
in the theory of linear circuits and systems.

Let us consider another example to illustrate now the description of nonlinear cir-
cuits in the terminology of systems theory. To this end, we consider a nonlinear conduc-
tor having a quadratic i-v characteristic given by

=g, (), (13)

where i(f) and v(r) # §(r) are, respectively, the current and voltage at the above non-

linear conductor, and g, is a constant. Similarly as (11), (13) can be put into the form

exploited in the theory of systems. That is we can rewrite (13) as
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Dirac impulses. Such the description is not simply possible because the product 5(¢)S5(¢) does
not exist [8]. On the other hand, it follows from the above discussion that the two-dimensional
Dirac impulse &(f,)5(#,) can be regarded in calculations as something like a product of two
ordinary one-dimensional Dirac impulses. Then, however, the calculations must be carried out in
two dimensions (the dimension of the Dirac impulse §(#,)0(t,) can not be forgotten, dropped).
Note also that the form &(#,)5(t,) of the two-dimensional Dirac impulse shows that this

impulse can be factored.

Furthermore, it follows from the above derivations, presented for the case of a circuit with
quadratic nonlinearity, that the theory of the two-dimensional Dirac impulse can be generalized to
more dimensions. That is the three-dimensional Dirac impulse will have the form of

6(1,)6(t,)5(ty) with the normalizing condition

wf uoIé(rl)é(rz)é'(r} Ydr dr,dr, = ( Té(rl )dr,]-
oo ~o (17

i
[ ja(zz)dzzJ(Té(g)dz}Jz1.1-1=1 .

Similar forms and conditions like (17) will hold for four dimensions, five dimensions, and
SO on.

4. MULTI-DIMENSIONAL FOURIER TRANSFORMS
OF MULTI-DIMENSIONAL DIRAC IMPULSES

A n-dimensional Fourier transform of a function h(,...,1,) of the n-dimensional

time is defined as [9]

H(fyse f,) = F {h(t,,..01,)} =

o (18)
= [ [t - exp(= 270 fity + oot S, ))elty - dlt, |

where f,,..., f, mean the frequencies from the n-dimensional frequency space.

Applying the n-dimensional Dirac impulse &(7,)---6(z,) instead of A(Z,,...,1 ) in (18),

we get
O% {6(tl ) e 6(tn)} = .[ Ié‘(tl ) e 6(’;}) ) exp(_jzﬂ'(.f;tl +..+ -f;llll ))dtl T dtn =
o - (19)

:[a]é‘(tl)exp(—j27zf1tl)J---(0]5([,)exp(—j27zj:,t")J =l--1=1,
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The inverse n-dimensional Fourier transform is given by [9]

h(tyyeent,) = F HH(f s £} =

o % (20
= [ [H(Soos 1) exp(27( Sty + oot S0, ) -,

Applying (20) to the Fourier transform of the n-dimensional Dirac impulse, which
isequalto | (see (19)), we arrive at

1Y = [ 1, exp(2a(f ++ f1, ), df, =
= @1)

=£Oj-lexp(j27rflt,)]-~( 3]1exp(j27rf"t")) =0(1)---6(1,).

The results given by (19) and (21) are of course the correct results in view of the theory pre-
sented. ’

The multi-dimensional Dirac impulses can also appear in the Volterra nonlinear analysis,
which is carried out in the frequency-domain (in the multi-dimensional frequency space). In such
the analysis, we can have to do with such functions in the n-dimensional time domain like [6]

exp(J2x(fit, +.+ fi1,) (22)

where £ is the frequency of a harmonic signal applied to the circuit input.

To calculate the n-dimensional Fourier transform of the function (22), we must use the rela-
tion (18). So applying (22) instead of A(1,,...,t ) in (18), we get

o“7{exp(j27r(fat, +...+fat,,)} = T...Texp(jZIr(fatl +..+fit):
C . 23)
exXp(=j2rx(ff, +...+ fot, )dt, - dt, =[ jlexp(—jZ;r(fl _—.fa)tl)J””

[ Ilexp(—jZn(fn—ﬁ,)tn)}za(fl_ﬂ)...g(fn_ﬂ)_

Note the occurrence of the products of Dirac impulses in the frequency domain on
the right-hand side of (23). This is the correct result in view of the theory presented. It is
called here the n-dimensional Dirac impulse in the n-dimensional frequency space.

5. CONCLUSION

The multi-dimensional Dirac impulses have been introduced in this paper. It has
been shown that these impulses are factorable, that is they can be viewed as the products
of ordinary one-dimensional Dirac impulses of different arguments. And this fact is
fundamental for the nonlinear analysis with the use of Volterra series because such the
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for the input signal x(/) of a nonlinear circuit with a single input. In (3a), 4" (z,,...,7,)
means the circuit nonlinear impulse response of the n-th order regarding the current at
the conductor and related to the circuit input assumed. Similarly, A" (z,,...,z,) in (3b)

is the circuit nonlinear impulse response of the n-th order regarding the voltage across
the conductor and related to the circuit input assumed.

In the case of nonlinear circuits with multiple inputs, the expressions for i ()

and v'”(¢) are more complicated and have the following forms:

N = % n _
0= Y [ (K e )3, G5, ), (42)
b el N} o -
and
) N" * “ ( ) n (4b)
(n _ n B ,
G OEIED Y W VR Mx, (t-7,)dr,

heate{l, N} co oo

where 4" (z,,..7,) and A", (,,..,7, ) mean the circuit nonlinear impulse responses
of the n-th order associated with the current at and the voltage across the conductor,
respectively, and associated also with the i,..,i, € {l,..,N} arrangement of the input sig-

nals. N in (4a) and (4b) is the number of circuit inputs. Moreover, X, (t- T, ) means the

input signal at the input ike{],..,N} of the circuit, and the sum

A"
Z stands for the summation operation over all the arrangements of indices

.o efl A
ijy.iy €{1..,N} (of which the total number is N ).

Dropping for convenience the argument # in (2a) and (2b), and introducing then the
expressions given by (2a) and (2b) in (1), we obtain

(2)

R RS LUBSES A0 +[g,v +g2v(”v(1)1 +

+[glv”’ + g,y 4 g vy 4 g3v(')v‘”v(”1 Fo ®
Comparison of the components of the same order on both sides of (5) gives
i = glv(l) (6a)
2 = g v 4 gy (6b)
l-(3) ___glv(3) +g2v(‘)v(2) +g2v(2)v(|) +g3v(1)v(1)v(l) (6¢)

and so on.
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with
SP(F)=0 (11a)

P L) =8V W) (11b)

SO L L) =8V WP Sos F)+ 8,
VO LWL+ 8V CEW LIV OS)

(11¢)

where S(f), SP(f. 1), SO(f. 1, 1,)» and so on, play a role of the independent

current sources (independent of the voltages V', 1 and V', respectively, and so
on), connected in parallel with the conductor g . They are used in the analyses of the

corresponding orders n=1,2,3,....

From (10a-10c), it follows that the current transforms /' and the voltage trans-

forms V' depend upon exactly n frequencies Jis- f,, of the n-dimensional frequency

spaces, n =1,2,3,.... Moreover, (10a), (10b), and (10c) are similar to each other in the

sense that the term of the form g V" is a component of the currents I for all n.

However, there occur some additional components for » > 1 as in (10b) and (10c) (for
n =1, this additional component is per definition equal to zero). The additional compo-
nents in (10b) and (10c) can be considered as the independent current sources connected
parallel to the linear conductor g . Furthermore, note from (11b) and (11c) that the

values of these sources for a given order n =2 or n=3 are calculated using the values

of the voltages V", and V" and V¥, respectively, calculated before, in the analyses of
lesser orders # =1, and »n =1 and 2, accordingly.

It follows from the above observations that the model of the nonlinear conductor
[2] for nonlinear analysis in the frequency domain with the use of the Volterra series

consists of a linear conductor having the conductance G =g, and the independent

current sources connected to it in parallel, of which values are calculated for the each
order of the analysis separately, according to the relations given by (11a), (11b), (11c¢),
and so on.

From the above derivations (5-11) of the model of the nonlinear conductor, it fol-
lows that the form of this model (see the relations given by (10) and (1 1)) is independent
of that whether the nonlinear conductor is embedded in a nonlinear circuit having
a single input (then (3a) and (3b) apply) or in a nonlinear circuit possessing multiple
inputs (then (4a) and (4b) apply).

Using the scheme sketched above, the models of other basic nonlinear circuit ele-
ments like a nonlinear resistor, a nonlinear capacitor, a nonlinear inductor, a nonlinear
voltage-controlled voltage source, a nonlinear current-controlled voltage source, a non-
linear voltage-controlled current source, and a nonlinear current-controlled current
source can be derived similarly. These models have been derived and presented in [2],
[4]. To complete, the models of the linear elements and of the independent current and
voltage sources, for the use in nonlinear analysis, have been derived in [2, 4], too.
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3. MODIFIED NODAL FORMULATION FOR NONLINEAR CIRCUITS
WITH SINGLE AND MULTIPLE INPUTS

In the description of linear circuits in the frequency domain, the basic circuit ele-
ments can be split into two groups: one formed by elements possessing an admittance
description, and the second consisting of those that do not. For details, see [1].

The elements which do not possess the admittance matrix description can be incor-
porated into the equations describing a circuit in such a way that they extend the classic
nodal formulation of circuit equations (based on the use of the admittance matrix) by
new matrices &, £, and Z . Then one arrives at the so-called modified nodal formula-

tion (the modified admittance matrix description), which has the following form [2]:

Y al|V X,
= (12)
pZ|I X,
where Y is an admittance matrix determined by the circuit elements possessing the

admittance description, but Z is a matrix of impedance character determined by the
non-admittance-type elements. Furthermore, & and S are dimensionless matrices,

[V I]T is a vector of unknown nodal voltages and branch currents, but [X, X, ]T isa

vector of the external independent current (X , ) and voltage (X ,,) sources applied to

the circuit inputs. The letter 7 in the above vectors stands for the transposing operation.
Moreover, the elements of the matrices and vectors occurring in (12) can depend upon
the frequency f'as being the Fourier transforms.

The modified admittance matrix occurring in (12) is formed with the use of a
mnemonic technique of stamps developed for basic linear circuit elements [1] (for ex-
ample, for a linear conductor the associated equation is of the form /-G -V =0,
where / and V are the Fourier transforms of the current and voltage, respectively, at the
conductor, but G means its conductance).

Taking into account the form of the models of the basic nonlinear elements, basic
linear elements, and external independent sources derived for the MNF and discussed in
the previous section, we see that to arrive at the MNF for nonlinear circuits one needs to
modify the description given by (12) by adding to it an additional vector consisting of
the values of the independent current and voltage sources arising in the models of the
nonlinear elements (for instance, see (11b) and (11c)). This leads to the following de-

scription:
(n) n n n (n)
Sl +[Y( ’ a( ):||:V( )j|: X’ (13)
n) n) (n) (n) (n)
S gz 1 X/

where the superscript # =1 (linear), 2, 3, ...means the order of the analysis, and S,’")

and S are the corresponding vectors of the internal independent current and voltage
v p g p g
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sources introduced to the description by the circuit nonlinear elements. Moreover, note
T .
that the vector [ X" X ;n)] for the external independent sources, occurring on the

right-hand side of (13), has the form

X% e [X7] [0
= and = forn>1. (14)
Xl(/l) Xy Xl(/”) 0
For more details, see [2].

4. DIRAC IMPULSE EXCITATIONS IN THE MODIFIED NODAL FOR-
MULATION FOR NONLINEAR CIRCUITS

First, note that the MNF for nonlinear circuits given by (13) is, similarly as the
models presented in section 2, independent of that whether a nonlinear circuit possesses

T
one or multiple inputs. For both the cases, the vector of unknowns, I:V(") I("):I ,

consists of the n-dimensional Fourier transforms of the components of the circuit nodal
voltages and branch currents of the corresponding orders. (At this point, we remind the
fact that the n-dimensional Fourier transform depends upon the frequencies f,..., f,
from the n-dimensional frequency space.) Some of the elements of the vector
T
[V(") I(")] are the circuit output quantities (at a circuit single output or multiple
T
outputs). Furthermore, the elements of the vectors I:V("') I('")] ,m=123 .. ,n-1

with n=2,3,... are also used to calculate the values of the elements of the vectors

T
I:S (m g ] for a given n > 2, which describe the internal independent sources used

in the analyses of higher orders n > 2 (for example, see (11b) and (11c)).
Consider now the case of a nonlinear circuit with a single input and excited by a
Dirac impulse signal &(¢). Further, assume for the purpose of illustration of this case,

that the output signal is a nodal voltage given by (2b) and (3b). Assuming now that none
of h"(z,,...,7,), n>2, occurring in (3b) is a multidimensional Dirac impulse [9],
introducing there x(¢) = &(¢), and the multidimensional time (as shown in (7)), we get
from (3b)

VO, ent) = B (1, 001,) (15)

according to the theory presented in [10].

Applying the n-dimensional Fourier transform defined by (8) to (15) gives
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VOSer )= HP (S 1) (16)

where V" (f,.., ) and H"( J,»--»1,) are the n-th order component of the nodal

voltage at the output (more precisely, its n-dimensional Fourier transform) and the n-th
order nonlinear transfer function from the circuit input to the node represented by this
voltage.

Equation (16) shows that the nonlinear transfer functions of a nonlinear circuit with
a single input can be calculated in a very simple way in the calculations applying the
MNF. They are then obtained as the corresponding nodal voltages and/or branch cur-
rents by performing the analyses of the corresponding orders with the circuit input signal
being a Dirac impulse. Note also that the nodal voltages and branch currents of the cor-
responding orders, which are used in the calculations of the elements of the vectors

T
[S,(") S,(,") ] , are then equal to the corresponding nonlinear transfer functions of the

circuit, too.

The computer algorithms for the calculation of the nonlinear transfer functions of
nonlinear circuits with single inputs, based on the approach described above, which uses
the MNF and the Dirac impulse input excitation, have been implemented and presented
in [2], [3], [4]. Note that this approach is much simpler than the approach called the
exponential input method [5], [6], [11], {12], which was used so far in the calculations
of the nonlinear transfer functions. The exponential input method uses a more compli-

cated input signal, that is the sum of » exponentials exp(j27 ft), i =1,...,n, to calcu-

late the nonlinear transfer function of the n-th order (the number » changes with the
order of the analysis). Moreover, this method does not lead to such the direct results as,
for example, presented by (16).

In the case of nonlinear circuits possessing multiple inputs, such relations like (16)
do not hold. To see this, consider now a nonlinear circuit with N inputs and driven by an
input signal being the Dirac impulse &(¢). Further, assume that the output signal of this

circuit is a nodal voltage given by (2b) and (4b). Hence, on assuming that none of
(n)

b i (r)5+-»7,), 1 =2, in (4b) is a multidimensional Dirac impulse [9], substituting
there x, (1)=6(1), i, e{l,..,N}, and introducing the multidimensional time (as
shown in (7)), we get from (4b)

N'I

VOUat) = Y KD () (17)

oy €{l,..N}

according to the theory presented in {10].
Applying the n-dimensional Fourier transform defined by (8) to (17) leads to
(n) .
VO )= D HY  (firnf)) (18)

1t €41, N}















